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Abstract
We study the creation of photons in resonant cylindrical cavities with
time-dependent length. The physical degrees of freedom of the
electromagnetic field are described using Hertz potentials. We describe the
general formalism for cavities with arbitrary section. Then we compute
explicitly the number of TE and TM motion-induced photons for cylindrical
cavities with rectangular and circular sections. We also discuss the creation
of TEM photons in non-simply connected cylindrical cavities.
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1. Introduction

In quantum field theory time-dependent boundary conditions
or time-dependent background fields may induce particle
creation, even when the initial state of a quantum field is
the vacuum [1]. In the context of quantum electrodynamics,
uncharged mirrors in accelerated motion can in principle create
photons. This effect is referred to in the literature as the
dynamical Casimir effect, or motion-induced radiation [2]. In
particular, when the length of a high Q electromagnetic cavity
oscillates with one of its resonant frequencies, the number
of photons inside the cavity accumulates slowly and grows
exponentially with time. Many authors have considered this
problem using different approximations: from toy models of
scalar fields in 1 + 1 dimensions [3] to the more realistic
case of scalar [4, 5] and electromagnetic [6] fields in three-
dimensional rectangular cavities. Arbitrary periodic motion
of the boundary of an ideal cavity has been studied in [7]. The
relevance of finite temperature effects and losses have also been
considered [8].

Unlike the static Casimir effect [9], that has been measured
with increasing precision in the last years [10], an experimental
verification of the dynamical counterpart is still lacking.

The main reason is that typical resonance frequencies for
microwave cavities are of the order of gigahertz. It is very
difficult (although not impossible) to make a mirror oscillate
at such frequencies. One possibility is to consider a two-
dimensional array of nanoresonators coherently driven to
oscillate at very high frequencies [11].

Several alternative proposals have been investigated in
which the physical properties of the medium inside the cavity
change with time, but with the boundary of the cavity kept
fixed. For example, it has been proposed [12] that one could
change effectively the length of a cavity by irradiating with
ultra-short laser pulses a thin semiconductor film deposited on
one of the walls of the cavity (see also [13]). Nonlinear optics
may be used to produce effective fast moving mirrors.

From an experimental point of view, the idea of changing
the effective length of a cavity by irradiating a semiconductor
is promising [14]. A relevant possibility is to force periodic
oscillations of the conductivity of the semiconductor, as
this will enhance particle production for certain resonance
frequencies [15]. The first estimations of the number of
photons created in resonant situations are within the limits
of the minimum signal that could be detected. It is then
of interest to refine the calculations and to explore other
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Figure 1. Hollow, cylindrical cavity of arbitrary cross-sectional
shape.

geometries that could be relevant from an experimental point
of view. In order to understand the effect of the geometry,
in this paper we will analyse the moving mirror case for
cylindrical cavities of arbitrary section (see figure 1). The
physical degrees of freedom of the electromagnetic field will
be expressed in terms of the so-called scalar Hertz potentials.
We will reobtain previous results for rectangular cavities, and
we will extend them to the case of cylindrical cavities with
circular section. We will also consider the case of non-
simply connected cylindrical cavities, since in this case one
has additional transverse electromagnetic (TEM) modes.

The paper is organized as follows. In section 2 we
introduce the Hertz potentials and we express the boundary
conditions for moving mirrors in terms of them. We also show
the equivalence of the description with previous approaches
based on dual transverse electric (TE) and magnetic (TM)
vector potentials. In section 3 we quantize the theory, and we
find the relation between the number of TE and TM created
photons with the number of particles associated with the scalar
Hertz potentials. Section 4 includes explicit calculations for
cavities with rectangular and circular sections. The case of
coaxial resonant cavities is considered in section 5, where
we quantize the TEM modes and show that they can be
described by a one-dimensional scalar field. Section 6 contains
a summary and a discussion of the results.

2. Classical description

2.1. Vector and scalar Hertz potentials

We consider in this section the representation of the physical
degrees of freedom of the electromagnetic field in terms of
Hertz potentials, which allows an alternative picture to the
standard vector A and scalar potentials�. In the Lorentz gauge
µε∂t� + ∇ · A = 0, the Maxwell equations for linear media
read

µε
∂2�

∂t2
− ∇2� = 1

ε
ρ − 1

ε
∇ · P0, (1)

µε
∂2A
∂t2

− ∇2A = µJ + µ
∂P0

∂t
+ ∇ × M0, (2)

where we have included, in addition to the induced electric and
magnetic polarizations (which are taken into account by the
constants ε andµ), permanent polarizations and magnetization
P0 and M0. These are introduced to motivate the form of the
Hertz potentials [16, 17]. We are using SI units with ε0 = 1,
µ0 = 1 and c = 1.

Now we introduce two vector potentials, Πe and Πm, by
expressing � and A in a symmetric form with respect to the
terms containing P0 and M0 in the rhs of equations (1), (2):

� = −1

ε
∇ · Πe, (3)

A = µ
∂Πe

∂t
+ ∇ × Πm. (4)

Πe and Πm are known as the electric and magnetic vector
Hertz potentials [16, 18]. The equations satisfied by the these
potentials are simplified if one introduces two functions, Qe

and Qm, known as stream potentials, as follows:

ρ = −∇ · Qe, J = ∂Qe

∂t
+

1

µ
∇ × Qm. (5)

Using equations (3)–(5) in equations (1), (2) one finally arrives
at

(µε ∂2
t − ∇2)Πe = Qe + P0, (6)

(µε ∂2
t − ∇2)Πm = Qm + M0. (7)

There is a gauge freedom that must be suitably fixed in order
to obtain equations (6) and (7) [18]. The electric field and
magnetic induction are given in terms of the vector Hertz
potentials by

E = 1

ε
∇(∇ · Πe)− µ

∂2Πe

∂t2
− ∇ × ∂Πm

∂t
, (8)

B = µ∇ × ∂Πe

∂t
+ ∇ × (∇ × Πm). (9)

In vacuum at points away from the sources, the fields can
be expressed in terms of only two scalar functions, the so-called
scalar Hertz potentials, each satisfying a homogeneous wave
equation [16]. This result translates to the Hertz formalism by
writing

Πe = φ ê3, Πm = ψ ê3, (10)

where ê3 is a unit vector in a fixed direction. In this wayψ gives
rise to TE fields with respect to ê3, whereas φ represents TM
fields. For our purposes ê3 will be taken along the longitudinal
axis of the cylindrical cavity. Moreover we will use either
Cartesian or cylindrical coordinates in this paper, with ê3 = ẑ
in both cases. The transverse directions (ê1, ê2) will stand for
(x̂, ŷ) in the first case and (ρ̂, φ̂) in the second.

The potentials and fields can be written in terms of
the two scalar Hertz potentials using equation (10) in
equations (3), (4), (8), (9). The result is

� = −∂zφ, (11)

A = ∂2ψ ê1 − ∂1ψ ê2 + ∂tφ ẑ, (12)

E = (∂1∂zφ−∂2∂tψ) ê1 +(∂2∂zφ+∂1∂tψ) ê2−(∇2
⊥φ) ẑ, (13)

B = (∂2∂tφ + ∂1∂zψ) ê1 + (−∂1∂tφ + ∂2∂zψ) ê2 − (∇2
⊥ψ) ẑ,

(14)
where the transverse Laplacian is defined as ∇2⊥ ≡ ∇2− ∂2

∂z2 . In

Cartesian coordinates (∂1, ∂2) = ( ∂
∂x ,

∂
∂y ) and ∇2⊥ = ∂2

∂x2 + ∂2

∂y2 .

In cylindrical coordinates (∂1, ∂2) = (
∂
∂ρ
, 1
ρ
∂
∂φ

)
and ∇2⊥ =

1
ρ
∂
∂ρ

(
1
ρ
∂
∂ρ

)
+ 1
ρ2

∂
∂φ2 .

In previous works [6, 19], the electromagnetic degrees of
freedom have been described in terms of two vector potentials
ATE and ATM with null divergence and z-component. The TE
electric and magnetic fields are given by

ETE = −ȦTE, BTE = ∇ × ATE, (15)
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while the TM fields are given by the dual relations

BTM = ȦTM, ETM = ∇ × ATM. (16)

Comparing equations (15) and (16) with the expressions for
the electromagnetic fields in terms of the Hertz potentials
equations (8)–(10), we obtain

ATE = ∇ × Πm = ẑ × ∇ψ,
ATM = ∇ × Πe = ẑ × ∇φ, (17)

so both approaches are equivalent.
The description in terms of independent TE and TM fields

is possible due to the particular geometries we are considering.
Indeed, using the above definitions and boundary conditions
(see below) it is easy to check that no mixed terms appear in
Maxwell’s Lagrangian and Hamiltonian.

2.2. Boundary conditions for a perfect conducting cavity

In the static case, the boundary conditions for the fields
over the walls of the cavity are Et = 0 and Bn = 0.
These translate into conditions for the two scalar potentials
through equations (13), (14). The scalar Hertz potential ψ
satisfies Dirichlet boundary conditions on the longitudinal
boundary (z = 0, Lz ) and Neumann boundary conditions on
the transverse boundaries,

ψ |z=0,Lz = 0,
∂ψ

∂n

∣∣∣∣
trans

= 0. (18)

On the other hand, the scalar Hertz potential φ satisfies
Neumann boundary conditions on the longitudinal boundary
(z = 0, Lz) and Dirichlet boundary conditions on the
transverse boundaries,

∂φ

∂z

∣∣∣∣
z=0,Lz

= 0, φ|trans = 0. (19)

Let us now consider the boundary conditions in the case
when one of the surfaces is moving, say z = Lz(t). The
boundary conditions on a moving interface between two media
containing a surface charge density σ and a surface current K
are [20]

(DII − DI) · n = σ,

(BII − BI) · n = 0,

[n × (HII − HI) + (v · n)(DII − DI)] · t = K · t,

[n × (EII − EI)− (v · n)(BII − BI)] · t = 0,

(20)

where n denotes the normal to the interface going from medium
I to medium II, and t is any unit vector tangential to the surface.
These conditions can be derived by performing a Lorentz
transformation to the reference system where the surface is
instantaneously at rest [19], or by consistency of the Maxwell
equations in the laboratory frame [20].

We assume the moving wall to be a perfect conductor.
Therefore the fields vanish exactly in region II and the
boundary conditions in equation (20) become

B · ẑ = 0, (E × ẑ + vB) · t = 0, (21)

where v = L̇ z . In terms of the two scalar Hertz potentials we
obtain

ψ(z = Lz(t)) = 0, (∂z +v ∂0)φ(z = Lz(t)) = 0, (22)

that modify the boundary conditions in equations (18) and (19)
on the moving longitudinal boundary (z = Lz(t)).

3. Quantum description

In this section we will quantize the electromagnetic field using
the scalar Hertz potentials formalism. We will also obtain the
relation between the Bogoliubov coefficients relating IN and
OUT bases of the scalar field with those of the electromagnetic
field. We will assume that the cavity is at rest for t < 0,
and that the wall placed at z = Lz begins to move with a
prescribed trajectory Lz(t). We will mainly concentrate on
harmonic motions of the type

Lz(t) = L0 [1 + ε sin�t + ε f (t)] , (23)

where f (t) is some decaying function that allows us to meet
the continuity conditions at t = 0. The motion ends at t = T .

3.1. Transverse electric scalar field

Let us start with the TE scalar Hertz potential ψ . We expand
the field as

ψ(x, t) =
∑

k

CkaIN
k uIN

k,TE(x, t) + h.c., (24)

where uIN
k,TE(x, t) are the solutions of the Klein–Gordon

equation which have positive frequency in the IN region (t <
0), aIN

k are the corresponding annihilation bosonic operators,
and Ck are normalization constants. The summation index is
k = (k⊥, kz = nzπ/Lz). In the IN region the explicit form of
the solution is

uIN
k,TE(x, t) = e−iωk t

√
2ωk

√
2

Lz
sin(kz z)vk⊥(x⊥), (25)

with ∇2⊥vk⊥ = −k2⊥vk⊥ andwk = |k|. The set of functions vk⊥
satisfies Neumann boundary conditions on the lateral surface
and can be assumed to be real and orthonormal on the plane
x⊥.

In order to fix the normalization constants Ck and
the commutation relations between creation and annihilation
operators, we compute the Hamiltonian of the electromagnetic
field. We find

H = 1

8π

∫
d3x (E2 + B2)

= 1

8π

∫
d3x (−ψ̇∇2

⊥ψ̇ + ∇2ψ∇2
⊥ψ)

=
∑

k

|Ck|2
8π

k2
⊥ωk(a

IN
k (a

IN
k )

† + h.c.). (26)

Therefore, with the choice |Ck| = √
8π/|k⊥|, the operators

aIN
k and (aIN

k )
† satisfy the usual commutation relations [17].
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For 0 < t < T we expand the IN basis in an instantaneous
basis

uIN
k,TE =

∑
p

Q(k)
p,TE(t)

√
2

Lz(t)
sin(pz(t)z)vp⊥ (x⊥), (27)

where pz(t) = pzπ/Lz(t). The initial conditions are

Q(k)
p,TE(0) = 1√

2ωk
δpk, Q̇(k)

p,TE(0) = −i

√
ωk

2
δpk. (28)

This expansion must be a solution of the wave equation. Using
the fact that both sin(pz(t)z) and vp⊥(x⊥) form a complete and
orthonormal set, and the fact that they only depend on t through
Lz(t), we obtain a set of coupled equations for the temporal
coefficients Q(k)

p,TE(t) [6]

Q̈(k)
p,TE + ω2

p(t)Q
(k)
p,TE = 2λ(t)

∑
j

gpj Q̇(k)
j,TE

+ λ̇(t)
∑

j

gpj Q
(k)
j,TE + O(ε2), (29)

where

ωp(t) =
√

p2
⊥ +

(
pzπ

Lz(t)

)2

, λ(t) = L̇ z(t)

Lz(t)
. (30)

The coupling coefficients are given by

gpj = −gjp =



(−1)pz + jz

2pz jz

j 2
z − p2

z

δp⊥,j⊥ if pz �= jz

0 if pz = jz.
(31)

For t > T (OUT region), the time-dependent coefficients
Qk

p,TE become

Qk
p,TE = Ak

p,TE
e−iωk t

√
2ωk

+ Bk
p,TE

eiωk t

√
2ωk

. (32)

We introduce the OUT basis uOUT
k,TE(x, t) as the set of solutions

of the Klein–Gordon equation that are of the form given in the
rhs of equation (25) in the OUT region. The IN and OUT bases
are then related by the Bogoliubov transformation:

uIN
k,TE =

∑
p

Bk
p,TE(u

OUT
p,TE)

∗ + Ak
p,TEuOUT

p,TE. (33)

Using this relation it is easy to show that the number of OUT
photons with TE polarization and wavevector k is given by

〈Nk,TE〉 = 〈0IN|(aOUT
k )†aOUT

k |0IN〉 = k2
⊥

∑
p

|Bp
k,TE|2
p2⊥

. (34)

3.2. Transverse magnetic scalar field

The quantization of the TM scalar Hertz potential φ is
analogous to that of ψ . The explicit form for the IN basis
is now given by

uIN
k,TM(x, t) = e−iωk t

√
2ωk

√
2

Lz
cos(kzz)rk⊥(x⊥), (35)

with ∇2⊥rk⊥ = −k2⊥rk⊥ , the functions rk⊥ satisfying Dirichlet
boundary conditions on the lateral surface. Following [6], we
introduce the instantaneous basis

uIN
k,TM =

∑
p

(Q(k)
p,TM(t) + Q̇(k)

p,TM(t)g(z, t))

×
√

2

Lz(t)
cos(pz(t)z)rk⊥(x⊥). (36)

The initial conditions for Q(k)
p,TM are the same as those

for Q(k)
p,TE. The function g(z, t) can be expressed as

g(z, t) = L̇ z(t)Lz(t)ξ(z/Lz(t)), where ξ(z) is a solution to the
conditions ξ(0) = ξ(1) = 0, ∂zξ(0) = 0, and∂zξ(1) = −1 [6].
There are many solutions to these conditions, implying a
freedom for selecting the instantaneous basis. However, it can
be proved that physical quantities, such as the mean number
of created TM photons or the energy density inside the cavity,
are independent of the particular choice of g(z, t) [6]. The
equation of motion for Q(k)

p,TM is similar to equation (29) for

Q(k)
p,TE, namely

Q̈(k)
p,TM + ω2

k(t)Q
(k)
p,TM

= −2λ(t)
∑

j

hjp Q̇(k)
p,TM − λ̇(t)

∑
j

hjp Q(k)
p,TM

− 2λ̇(t)L2
z (t)

∑
j

sjp Q̈(k)
p,TM

−
∑

j

Q̇(k)
p,TM[sjpλ̈(t)L

2
z (t)− λ(t)ηjp]

− λ(t)L2
z (t)

∑
j

sjp∂
3
t Q(k)

p,TM + O(ε2), (37)

where the coefficients sjp, ηjp and hjp are given by

sjp =
∫ Lz(t)

0
dz ξ(z)χjχp,

ηjp = L2
z (t)

∫ Lz(t)

0
dz [(ξ ′′(z)− ω2

j ξ(z))χjχk + 2ξ ′(z)χ ′
jχk],

hjp =



(−1)pz + jz

2 j 2
z

p2
z − j 2

z

δp⊥,j⊥ if pz �= jz

−δp⊥,j⊥ if pz = jz.

Here ′ denotes derivative with respect to z. The functions
χj ≡ √

2/Lz(t) sin(nzπz/Lz(t)) are normalized in the interval
[0, Lz(t)]. Note that the above coefficients are independent
of the particular form of the spatial modes rj⊥(x⊥) for the
transversal section.

The equation for the number of TM photons in the OUT
region is similar to equation (34), with Bp

k,TE replaced by
Bp

k,TM. Equation (34) and its TM counterpart are very useful
because they relate the number of motion-induced photons
with the Bogoliubov transformation of two scalar fields.
Therefore, the analysis is simplified since it does not involve
any reference to the polarization of the electromagnetic field.
Moreover, the information about the transversal section of the
cavity only enters through the spectrum ωk.

4. Applications

In this section we will compute the number of photons created
in resonant situations, for cylindrical cavities with either
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rectangular or circular sections. The equations of motion
for the coefficients Q(k)

p,TE of the scalar Hertz potential �
(equation (29)) and the similar one for the scalar Hertz potential
φ (equation (37)) describe a set of coupled harmonic oscillators
with periodic frequencies and couplings. They are of the same
form as the equations that describe the modes of a scalar field
in a three-dimensional cavity with an oscillating boundary,
and can be solved using multiple scale analysis (MSA). For
a detailed description of the method see, for example, [4].

In the ‘parametric resonant case’, in which the external
frequency � is twice the frequency of an unperturbed mode
k (� = 2ωk), equations (29) and (37) lead to a resonant
behaviour of the solutions. Moreover, there is intermode
coupling between modes j and k if any of the resonant coupling
conditions � = |ωk ± ωj| is satisfied. This is the case, for
example, for 1D geometries and cubic cavities. Except for
special geometries, in general the resonant coupling conditions
are not met: different k modes will not be coupled during
the dynamics, and equations (29) and (37) reduce to the
Mathieu equation for a single mode. In consequence, the
number of motion-induced photons in that given mode will
grow exponentially. The growth rate is different for TE and
TM modes. This is due to the fact that, while the rhs of
equation (29) vanishes for j = p, this is not the case in
equation (37). The result is

〈Nk,TE(t)〉 = sinh2(λk,TEεt), (38)

〈Nk,TM(t)〉 = sinh2(λk,TMεt), (39)

where λk,TE = k2
z /2ωk and λk,TM = (2ω2

k − k2
z )/2ωk . Note

that when both polarizations are present, the rate of growth for
TM photons is larger than for TE photons, i.e., λk,TM > λk,TE.
As already mentioned, these expressions are independent of the
mode functions in the transverse direction, vk⊥(x⊥) or rk⊥(x⊥).
The dependence on the sectional geometry enters only through
the spectrum ωk. The above expressions for the growth rates
equations (38), (39) are valid for uncoupled modes. When
there is mode coupling, the expressions for the growth rates
are different, as explained in [4, 6].

4.1. Cavities with rectangular section

This problem has been analysed previously in [6]. The
transverse mode functions vk⊥(x⊥) associated with the scalar
Hertz potential ψ are

vnx ,ny (x⊥) = 2√
Lx L y

cos

(
nxπx

Lx

)
cos

(
nyπy

L y

)
, (40)

where nx and ny are non-negative integers that cannot be
simultaneously zero. The spectrum is (nz � 1)

ωnx ,ny ,nz =
√
(nxπ/Lx )2 + (nyπ/L y)2 + (nzπ/Lz)2. (41)

The transverse mode functions rk⊥(x⊥) associated with the
scalar Hertz potential φ are

rmx ,m y (x⊥) = 2√
Lx L y

sin
(

mxπx

Lx

)
sin

(
m yπy

L y

)
, (42)

where mx and m y are integers, such that mx ,m y � 1. The
spectrum is given by equation (41) with nz � 0.

As an example, we consider the parametric resonant case
� = 2ωk, and show the results for the number of photons
created in a cubic cavity of size L . Let us denote the modes
by (nx , ny, nz). For the TE case, the fundamental mode
is doubly degenerate ((1, 0, 1) and (0, 1, 1)) and uncoupled
to other higher modes. The number of TE photons in
these modes grows exponentially as exp(πεt/

√
2L). The

fundamental mode for the TM fields corresponds to (1, 1, 0),
and is coupled to the mode (1, 1, 4). The number of TM
photons in these modes grows as exp(4.4εt/L) [6]. The lowest
possible excitable frequency of the field equals the fundamental
frequency of both the TE and TM spectra. However, the
exponential growth of motion-induced TM photons with
fundamental energy in greater than that of TE photons.

4.2. Cavities with circular section

Let us now introduce cylindrical coordinates (ρ, φ, z) to
consider a cylinder with circular section of radius ρ = R.
The transverse mode functions vk⊥(x⊥) related to TE fields
are

vnm(x⊥) = 1√
π

1

RJn(ynm)
√

1 − n2/y2
nm

Jn

(
ynm

ρ

R

)
einφ,

(43)
where Jn denotes the Bessel function of nth order, and ynm

is the mth positive root of the equation J ′
n(y) = 0. The

eigenfrequencies are given by (nz � 1)

ωn,m,nz =
√( ynm

R

)2
+

(
nzπ

Lz

)2

. (44)

The solution for the mode functions rk⊥(x⊥) associated
with TM fields is

rnm(x⊥) = 1√
π

1

RJn+1(xnm)
Jn

(
xnm

ρ

R

)
einφ, (45)

where xnm is the mth root of the equation Jn(x) = 0. The
spectrum is given by equation (44) with ynm replaced by xnm

and nz � 0.
Denoting the modes by (n,m, nz), the lowest TE

mode is (1, 1, 1), and it has a frequency ω111 =
(1.841/R)

√
1 + 2.912(R/Lz )2. This mode is uncoupled

to any other modes, and according to equation (38) the
number of photons in this mode grows exponentially in
time as exp(πεt/

√
1 + 0.343(Lz/R)2 Lz)when parametrically

excited. It is interesting to point out that for this mode it
is possible to tune the resonance by changing the relation
of the radius and the height of the cavity. The lowest TM
mode (0, 1, 0) is also uncoupled, and it has a frequency
ω010 = 2.405/R. From equation (39) we find the parametric
growth to be exp(4.81εt/R). This mode cannot be resonated
by simple tuning since its frequency depends solely on the
radius of the cylinder. For Lz large enough (Lz > 2.03R), the
resonance frequency ω111 of the lowest TE mode is smaller
than that for the lowest TM mode. Then the (1, 1, 1) TE mode
is the fundamental oscillation of the cavity.
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Table 1. Values of 2λ
ω

for different cavities. In the cubic case, the
values are independent of the size L . For cylindrical cavities of
length L and circular section of radius R, we are assuming
L/R = 10.

Cavity Mode 2λ/ω

Cubic TE (1, 0, 1) 0.5
Cubic TE (0, 1, 1) 0.5
Cubic TM (1, 1, 0) 1.0
Cubic TM (1, 1, 4) 0.3
Cylindrical TM (0, 1, 0) 2.0
Cylindrical TE (1, 1, 1) 0.03

4.3. Numerical estimations

The number of generated photons computed in the previous
sections is in general proportional to exp[2λεt], where λ

depends on the geometry and the particular mode considered
(see for example equations (38) and (39), that are valid for
uncoupled modes). The amount of created photons is limited
by the Q factor of the cavity. If the mirror oscillates during
a time tmax 
 Q/ω (with ω the frequency of the mode), the
maximum number of particles is exp[ 2λ

ω
εQ]. In table 1 we

show the value of 2λ
ω

for the lowest modes in cavities with
rectangular and circular sections. The maximal dimensionless
amplitude for the mechanical oscillation of the mirror is of
order εmax 
 10−8 [5]. Therefore, a very high Q factor is
needed to produce a large number of photons.

The constraint over Q can be relaxed if, instead of
considering moving mirrors, one considers a cavity containing
a thin semiconductor film. The effective length of the cavity
can be changed by irradiating the semiconductor [12–15]. In
this situation, the maximum number of created photons is
of order exp[aε̃Q], where a = O(1) and ε̃ depends on the
properties of the semiconductor and on the geometry of the
cavity. For reasonable values of the parameters one can have
values of ε̃ as large as 
10−2 [15]. In this case, a large number
of photons can be produced, even if the Q factor is not so high.
For example, for conservative values Q = 106, ε̃ = 10−4,
a = 1 the number of created photons is of order 1043.

5. Non-simply connected cavities: transverse
electromagnetic modes

When the cylindrical cavity is non-simply connected, in
addition to the TE and TM modes one should also consider the
TEM modes, for which both the electric and magnetic fields
have vanishing z components. The treatment of the TE and
TM modes in these cavities is similar to the case of hollow
cylinders. However, to describe the TEM modes it is necessary
to introduce an additional scalar field ϕ(z, t). Indeed, working
with the usual vector potential A, the TEM solutions are of the
form

A(x⊥, z, t) = A⊥(x⊥)ϕ(z, t), (46)

E = −(∂tϕ) A⊥, (47)

B = (∂zϕ) ẑ × A⊥. (48)

The transverse vector potential has vanishing rotor
and divergence, and zero tangential component on the
transverse surfaces. Therefore, A⊥ is a solution of an

electrostatic problem in the two transverse dimensions (in
hollow cylindrical cavities the transverse potential vanishes
and TEM modes do not exist). The scalar field ϕ satisfies
Dirichlet boundary conditions on the longitudinal boundaries
z = 0 and z = Lz(t), and the longitudinal wave equation
(∂2

t −∂2
z )ϕ = 0. For a static cavity, the eigenfrequencies of the

TEM modes are wn = nπ/Lz . Note that this is an equidistant
spectrum. In the particular case of a resonant cavity formed
with two concentric cylinders, the transverse vector potential is
given by A⊥ = ρ̂/ρ. However, it is important to stress that the
description in this section is valid for a non-simply connected
cavity of arbitrary section.

In order to quantize these TEM modes, we proceed as in
section 3. The Hamiltonian associated with TEM modes is

HTEM = 1

8π

∫
d2x⊥ dz (E2 + B2)

= 1

8π

(∫
d2x⊥ |A⊥|2

)∫
dz [(∂tϕ)

2 + (∂zϕ)
2]. (49)

The above equation shows that the quantization of TEM modes
is equivalent to the quantization of a scalar field in 1 + 1
dimensions with Dirichlet boundary conditions at z = 0 and
z = Lz(t). This problem has been previously studied as a toy
model for the dynamical Casimir effect [3]. It is interesting that
this toy model describes TEM waves in non-simply connected
cavities.

Due to the conformal symmetry, in 1 + 1 dimensions it is
possible to write down an explicit expression for the modes
in terms of a single function satisfying the so-called Moore
equation [21]. This equation can be solved, for example,
using a renormalization group improvement of the perturbative
solution [22]. We will not repeat the analysis here, but just
quote the main results. As the eigenfrequencies are equidistant,
there is intermode coupling, and the spectrum of created
photons is completely different from the 3 + 1 case. If the
external frequency is � = qπ/Lz with q an integer, q � 2,
photons are created resonantly in all modes with n = q + 2 j ,
with j being a non-negative integer. The number of photons
in each mode does not grow exponentially, but the total energy
inside the cavity does.

Using the conformal symmetry in 1 + 1 dimensions, it is
possible to compute not only the total energy inside the cavity
but also the mean value of the energy density:

〈T TEM
00 (x, t)〉 = 1

8π
|A⊥|2〈[(∂tϕ)

2 + (∂zϕ)
2]〉

≡ 1

4π
|A⊥(x⊥)|2〈T00(z, t)〉. (50)

It can be shown that the one-dimensional energy density
〈T00(z, t)〉 grows exponentially in the form of q travelling
wavepackets which become narrower and higher as time
increases. As an example, in figure 2 we show the energy
density profile as a function of z for a fixed t and for the
case q = 4. As time evolves, the peaks move back and
forth, bouncing against the caps of the cavity. The height
of the peaks increases as exp( 2πqεt

Lz
) and their width decreases

as exp(−πqεt
Lz
), so that the total area beneath each peak, and

hence the total energy inside the cavity, grows as exp(πqεt
Lz
).

In figure 3 the energy density is shown as a function of time
at the mid-point z = Lz/2, also for the q = 4 case. This is
proportional to the signal that should be measured by a detector
placed at that point.
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Figure 2. One-dimensional energy density profile 〈T00(z, t)〉 for
fixed time t/Lz = 20.4 for the q = 4 case. The amplitude
coefficient is ε = 0.01.

6. Conclusions

In this paper we have analysed the non-stationary Casimir
effect for cylindrical cavities with arbitrary section and time-
dependent length. Using Hertz potentials, we have shown
that for hollow cylinders the full electromagnetic problem can
be treated by considering two scalar fields, one satisfying
Dirichlet boundary conditions and the other generalized
Neumann boundary conditions on the caps of the cavity. We
have derived explicit formulae for the number of TE and TM
photons created during the motion of the mirror in terms of
the Bogoliubov transformation connecting the IN and OUT
bases of the scalar fields. We have also shown the equivalence
between the Hertz potential approach and the dual vector
potentials approach used in previous papers.

Using the TE and TM scalar fields, we rederived results
for the number of photons created in resonant situations for
cavities of rectangular section, and we computed the TE and
TM photon creation in cavities with circular section.

We also considered non-simply connected cylindrical
cavities. In this case, it is necessary to introduce a third
scalar field satisfying Dirichlet boundary conditions to take
into account the TEM waves. We have shown that the dynamics
of this field is equivalent to that of a scalar field in 1 + 1
dimensions. Therefore, all results derived previously in ‘toy
models’ are useful to describe the creation of TEM photons,
i.e., TEM modes provide a realistic realization of the models in
1+1 dimensions. This is interesting not only from a theoretical
point of view. Indeed, TEM modes have in general a lower
fundamental frequency than TE and TM modes (this is the
case for example for a rectangular cavity containing an inner
cylinder along the longest direction). This is important, since
one of the main difficulties in measuring the dynamical Casimir
effect is to produce oscillations of the mirror at twice the lowest
frequency of the cavity. Moreover, as the eigenfrequencies
of TEM modes are equidistant, the modes are coupled and
the energy density in the cavity develops a very particular
structure that might be detected more easily than photons of
a given frequency. Taking into account these results, it may
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Figure 3. One-dimensional energy density profile 〈T00(z, t)〉 for the
midpoint z/Lz = 0.5 between the caps of the cavity. The
parameters are q = 4 and ε = 0.01.

be of interest to excite TEM photons by changing the effective
length of a cavity by irradiating a semiconductor placed inside
it. This could be done by inserting a metallic cylinder into the
cavities used in the experiments of [14].

Acknowledgments

FCL and FDM were supported by Universidad de Buenos
Aires, CONICET, Fundación Antorchas and Agencia Nacional
de Promoción Cientı́fica y Tecnológica, Argentina. MC and
DARD thank Carlos Villarreal for useful conversations on
Hertz potentials. We would like to thank the organizers of this
topical issue, Gabriel Barton, Victor V Dodonov and Vladimir
I Man’ko, for the invitation to submit a paper.

References

[1] Birrell N D and Davies P C D 1982 Quantum Fields in Curved
Space (London: Cambridge University Press)

[2] Dodonov V V 2001 Adv. Chem. Phys. 119 309
[3] Law C K 1991 Phys. Rev. Lett. 73 1931

Law C K and Shieve W C 1995 Phys. Rev. A 52 4405
Dodonov V V, Klimov A B and Man’ko V I 1990 Phys. Lett.

A 149 225
Lambrecht A, Jaekel M-T and Reynaud S 1996 Phys. Rev.

Lett. 77 615
Lambrecht A, Jaekel M-T and Reynaud S 1998 Europhys. Lett.

43 147
Dalvit D A R and Mazzitelli F D 1998 Phys. Rev. A 57 2113
Dalvit D A R and Mazzitelli F D 1999 Phys. Rev. A 59 3049

[4] Crocce M, Dalvit D A R and Mazzitelli F D 2001 Phys. Rev. A
64 013808

[5] Dodonov V V and Klimov A B 1996 Phys. Rev. A 53 2664
[6] Crocce M, Dalvit D A R and Mazzitelli F D 2002 Phys. Rev. A

66 033811
[7] Dodonov A V, Dodonov E V and Dodonov V V 2003 Phys.

Lett. A 317 378
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